Dimensioning of IP Networks - A still incomplete Framework

Thomas Bauschert
Postal Address: Siemens AG, ICN ISA Otto-Hahn-Ring 6 D-81730 München
Tel. +49 89 722-44056 Fax +49 89 722-62230 Email: Thomas.Bauschert@icn.siemens.de

Anton Riedl
Postal Address: Lehrstuhl für Kommunikationsnetze Technische Universität München D-80290 München
Tel. +49 89 289-23506 Fax +49 89 289-63506 Email: Anton.Riedl@ei.tum.de

ITG Workshop 07/00
Table of Contents

1) Introduction
2) Dimensioning for Stream Traffic
3) Dimensioning for low aggregated Elastic Traffic
4) Dimensioning for high aggregated (mixed) Traffic
5) IP Network Dimensioning
6) Summary
1. Introduction
Introduction
Basic IP Traffic Classification

Voice Video WWW FTP
 | | | | ...
 Traffic Class 1 Traffic Class 2 Traffic Class 3 ...
 Stream Traffic QoS 1 Stream Traffic QoS 2 Elastic Traffic QoS 1 Elastic Traffic QoS 2

Services/Applications
Traffic Classes
IP Traffic Types (w/w.o. QoS guarantee)
IP Traffic/QoS Parameter

- peak bitrate
- mean bitrate
- packet loss prob.
- end-to-end delay
- end-to-end blocking prob. (if adm. control)
- mean docu size
- min. docu transfer rate
 (= min. throughput)
- max. docu transfer time
 for docu of size x

ITG Workshop 07/00
Introduction
IP Link Dimensioning - Basic Classification Criteria

Basic Classification Criteria:

• Elastic (TCP) vs. stream (UDP) traffic

• Service (QoS) discrimination:
 • complete sharing
 • priorization only
 • bandwidth reservation only
 • priorization and bw. reservation
 •

• Degree of traffic aggregation:
 • source models (e.g. Web-traffic)
 • models for low aggregated traffic (e.g. on access links)
 • models for high aggregated traffic (e.g. on backbone links)
Introduction
IP Link Dimensioning - Overview

Service (QoS) Discrimination

- yes
- no

Mechanism

- prioritization
- bandwidth allocation
- prioritization+ bw. allocation

yes
- min. bw. for stream traffic
- ?
- mixed sc. (Queija?)

no
- dedic. bw. for stream and elastic traffic
- ?
- segregated scenario

Traffic Type

- elastic only
- stream only
- elastic / stream mix

elastic only
- M/G/R-PS (Lindberger) (low aggr.)
- 3-state model (Hartleb)
- FGN (Norros) (high aggr.)

stream only
- eff. bitrate (Lindberger) + multiservice blocking formula

elastic / stream mix
- integrated scenario:
 - (Queija?)
 - worst-case on-off model? (Hartleb)
2. Dimensioning for Stream Traffic
resource capacity for stream traffic

Packet-Level

- effective bitrate formula
- packet loss probability
 - e.g. Lindbergers formula
- peak bitrate, mean bitrate

Stream (Flow)-Level

- effective bitrates r_s
- model of shared resource
- offered traffic
 - e.g. multirate loss formula
- required call blocking probabilities B_s
- resulting call blocking probabilities B_s

resulting call blocking probabilities B_s
Link Dimensioning for Stream Traffic
Example: Lindbergers Effective Bitrate Formula

\[r(C) = \begin{cases}
\gamma \text{MBR} & \text{if } 0 \leq C \leq n^* \\
\gamma \text{MBR} \left(1 + 3\eta^2 \frac{PBR - \text{MBR}}{C^2} \right) & \text{if } n^* \leq C \leq n^{**} \\
\gamma \text{MBR} \left(1 + 3\eta \frac{PBR - \text{MBR}}{C} \right) & \text{if } C \geq n^{**}
\end{cases} \]

with:
\[\gamma = 1 + \eta / 100 \]
\[\eta = -2 \log P_{\text{loss}} \]
\[n^* = \begin{cases}
\eta \sqrt{3\text{MBR} \cdot PBR} & \text{if } PBR \geq 3\text{MBR} \\
3\eta \text{MBR} & \text{else}
\end{cases} \]
\[n^{**} = \begin{cases}
\eta PBR & \text{if } PBR \geq 3\text{MBR} \\
\eta^* & \text{else}
\end{cases} \]

\(PBR\) = peak bitrate
\(\text{MBR}\) = mean bitrate
\(C\) = link (resource) capacity
\(r\) = effective bitrate of traffic class \(s\)
\(n^*, n^{**}\) = threshold values
Link Dimensioning for Stream Traffic
Example: Lindbergers Effective Bitrate Formula
Link Dimensioning for Stream Traffic Blocking Probability vs. Link Capacity

Traffic Class 1: PBR = 1, MBR = 1
Traffic Class 2: PBR = 3, MBR = 3
Traffic Class 3: PBR = 10, MBR = 10
Traffic Class 4: PBR = 5, MBR = 1
Traffic Class 5: PBR = 10, MBR = 1.5
3. Dimensioning for low aggregated Elastic Traffic
Dimensioning for low aggregated Elastic Traffic Activity Model for Elastic Traffic

Session Level
Application level
Connection level (TCP)
File level
Burst and Packet level

ITG Workshop 07/00
Dimensioning for low aggregated Elastic Traffic

Elastic Traffic Characteristics (Example: Web-Traffic)

Measurements in educational and corporate environment, Spain 1997/98

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session interarrival time</td>
<td>Neg.-exponential</td>
<td>Traffic dependent</td>
<td></td>
</tr>
<tr>
<td>Pages/session</td>
<td>Log-Normal</td>
<td>23 ... 26</td>
<td>80 ... 170</td>
</tr>
<tr>
<td>Time between pages</td>
<td>Gamma</td>
<td>25 ... 35 s</td>
<td>135 ... 150 s</td>
</tr>
<tr>
<td>Page size</td>
<td>Pareto</td>
<td>40 ... 56 kByte</td>
<td>190 ... 200 kByte</td>
</tr>
<tr>
<td>Page delivery time</td>
<td>Network dependent</td>
<td>35 ... 75 s</td>
<td></td>
</tr>
<tr>
<td>Packet size</td>
<td>Multimodal</td>
<td>40, 552, 576, 1500 Byte</td>
<td></td>
</tr>
<tr>
<td>Packet interarrival time</td>
<td>Exponential</td>
<td>0,75 ... 1,2 s</td>
<td></td>
</tr>
</tbody>
</table>
Dimensioning for low aggregated Elastic Traffic

M/G/R-PS Model - Motivation

Characteristics:

- Elastic traffic call = single file to be transferred
- Poisson arrival process of files
- Heavy tailed file size distribution (Pareto distribution)
- Restricted bitrate of single source
- TCP/IP control loop

![Graph showing Pareto distribution vs. negative exponential distribution](image)

M/G/R-PS Model

Pareto distribution vs. neg. exponential distribution
Dimensioning for low aggregated Elastic Traffic
M/G/R-PS Model

modems
(= max. # of connections)

file arrival rate per
modem connection: \(\lambda_i \)

bandwidth of modem connection: \(r_{peak} \)

modem pool (PoP)

access link (bandwidth C)

\(\lambda = \sum \lambda_i \)

PS-System

files/documents

ITG Workshop 07/00
Dimensioning for low aggregated Elastic Traffic
M/G/R-PS Model

Required Input:

- IP flow characterized by:
 - document (file) arrival rate (neg. exp. distributed): \(\lambda \)
 - mean file size: \(x_{\text{mean}} \)
- max. bitrate of single source: \(r_{\text{peak}} < C \)
 \((C = \text{access line bandwidth}) \)

Dimensioning Objective:

- determine the link capacity \(C \) to guarantee an average transfer time \(E\{T(x)\} \) for a file of size \(x \)

or:

- determine the link capacity \(C \) to guarantee an certain average throughput for all file transactions
Expected sojourn time (or transfer time)

\[E\{T(x)\} = \frac{x}{r_{\text{peak}}} \left(1 + \frac{E_2(R, R\rho)}{R(1 - \rho)} \right) = \frac{x}{r_{\text{peak}}} \cdot f_R \]

where:

\[R = \frac{C}{r_{\text{peak}}} \quad \text{(\# of servers)} \]

\[\rho = \frac{\lambda \cdot x_{\text{mean}}}{C} \quad \text{(link utilization)} \]

\[E_2 = \text{Erlang’s second formula (Erlang C formula)} \]

"delay factor"
Link Dimensioning with M/G/R-PS-Model
Expected Transfer Time as Dimensioning Objective

Question: Which file size x should be taken for $E\{T(x)\}$?

Proposal: Take the 95th percentile of an assumed file size distribution e.g. a Pareto distribution.
Link Dimensioning with M/G/R-PS-Model
Average Throughput as Dimensioning Objective

Average bitrate (throughput) D during the file transfer phase:

$$D = \frac{r_{peak}}{\left(1 + \frac{E_2(R, R\rho)}{R(1 - \rho)}\right)} = \frac{r_{peak}}{f_R}$$
SIEMENS

Link Dimensioning with M/G/R-PS-Model
Possible Solutions for different Access Peak Rates r_{peak}

1) $(\lambda_1 + \lambda_2)$ with $r_{peak} = \frac{1}{\rho} (\rho_1 r_{peak1} + \rho_2 r_{peak2}) \rightarrow C$

2) λ_1 with $r_{peak1} \rightarrow C_1$
λ_2 with $r_{peak2} \rightarrow C_2$
\[C = C_1 + C_2 \]

3) $(\lambda_1 + \lambda_2)$ with $r_{peak1} \rightarrow C_1$
$(\lambda_1 + \lambda_2)$ with $r_{peak2} \rightarrow C_2$
\[C = \max(C_1, C_2) \]

Assumptions: • same file size x
• same target delay factor

ITG Workshop 07/00
Link Dimensioning with M/G/R-PS Model
Delay Factor wrt. Link Utilization and Link Capacity

\[r_{\text{peak}} = 64 \text{ kbit/s} \]
Link Dimensioning with M/G/R-PS Model
Simulation Results: Transaction Time vs. File Size
Link Dimensioning with M/G/R-PS Model
Transaction Time vs. File Size wrt. Round Trip Time

RTT = 30ms

RTT = 300ms

ITG Workshop 07/00
4. Dimensioning for high aggregated (mixed) Traffic
Dimensioning for high aggregated (mixed) Traffic
FGN Traffic Model

Fractional Gaussian Noise (FGN) Traffic Model:

IP flow i (self similar traffic) characterized by:
- mean bit rate: m_i
- normalized variance: $a_i = \frac{var_i}{m_i}$
- Hurst-parameter: H_i
Dimensioning for high aggregated (mixed) Traffic Link Dimensioning with FGN Model

Norros effective bitrate formula for self similar traffic (which can be described by a FGN model):

\[
C = m + \left(\kappa(H) \sqrt{-2\ln \varepsilon} \right)^{1/H} a^{1/(2H)} x^{-(1-H)/H} m^{1/(2H)}
\]

with:

\[
\kappa(H) = H^H (1 - H)^{1-H}
\]

\(m \): mean bitrate of input traffic (sum of \(m_i \))

\(a \): normalized variance of input traffic (assumed to be equal for all flows \(i \))

\(H \): Hurst parameter of input traffic (\(H = \max(H_i) \))

\(x \): buffer size

\(\varepsilon \): buffer overflow probability
Dimensioning for high aggregated (mixed) Traffic

FGN Model: Packet and Flow Level Parameter Mapping

Packet-Level

- Packet level traffic descriptors for aggregated traffic: \(m, a, H \)
- Packet level QoS descriptors for aggregated traffic: \(\mathcal{E} \) (delay, delay-variation)

Flow-Level

- Buffer size \(x \)
- Effective bitrate of aggregated traffic

Norros' Formula

(max. hop count)
Dimensioning for high aggregated (mixed) Traffic Capacity vs. mean Bitrate and Hurst Parameter

C(m,H)/m

\[C(m,H)/m = \frac{a^3}{\varepsilon(x-1)} \]

a = 3
ε = 0.001
x = 1000

ITG Workshop 07/00

T. Bauschert, ICN ISA
19.07.2000 29
5. IP Network Dimensioning
IP Network Dimensioning
Core Network Dim. with Mean/Effective Bitrate Model*

*) Assumption:
given routing scheme, given topology

remark:
max. end-to-end delay is guaranteed by max. hop count
The whole access network is regarded as a single processor sharing system.

The model is based on a single link model described by a M/G/R-PS queue.

Each link is dimensioned to have the same delay factor.

Example:

- 100 TCP sinks
- $C_{\text{modem}} = 64 \text{kbit/s}$
- file size: 12KByte
- file arrival rate: 0.009788 1/s (per active modem connection)
- $C_{\text{acc}} = 192 \text{kbit/s}$
- $C_{\text{agg}} = 1.088 \text{Mbit/s}$

100 TCP sinks
- access node 1 (modem bank with 100 modems)
- aggregation node (access router)
- backbone node (backbone router)
- 1000 TCP sources
- Web-Server

*) for elastic traffic
6. Summary
Summary
IP Link Dimensioning - Open Issues

- Improve M/G/R-PS model to take into account different r_{peak} values, different RTT (no fair sharing!) and influence of the TCP start and congestion avoidance behaviour.

- Investigate application field of FGN (Norros) model: under which conditions is it suitable for high aggregated (mixed elastic/stream) traffic?

- Which dimensioning formula works well in the low aggregated mixed elastic/stream traffic scenario?

- Find dimensioning formulas for scenarios where priorization and/or bandwidth reservation is applied (i.e. scenarios with service discrimination).