

University of Würzburg Department of Distributed Systems Prof. Dr.-Ing. P. Tran-Gia

A Scalable Protocol Architecture for End-to-End Signaling and Resource Reservation in IP Networks

Michael Menth

Outline

- Mechanisms for QoS support in IP networks
- ▷ A scalable protocol architecture
 - Reservation aggregation for state scalability
 - Overreservation for signaling scalability
- ▷ Signaling traffic
 - Update model with overreservation
 - Analytical performance evaluation
- Numerical results
 - Tradeoffs
 - Rule of thumb for overreservation
 - Bandwidth efficiency
- ▷ Summary
- ▷ Outlook

Integrated Services

- ▷ RFC1633, RFC2205, RFC2210, RFC2211, RFC2212
- ▷ Per flow treatment
 - Traffic descriptors T_{spec}
 - Reservation descriptors R_{spec}
 - Admission control (AC)
 - Number of states proportional to number of flows
- ▷ Scalability problem in large networks

Differentiated Services

- ▷ RFC2475, RFC2597, RFC2598, RFC2638
- \triangleright Per Hop Behavior (PHB) = per class treatment
 - Expedited Forwarding (EF), Assured Forwarding (AF), Best Effort (BE)
 - Traffic conditioners at edge routers, meters, policers, shapers
 - No per flow information
 - No admission control (AC)
- ▷ No QoS guarantees due to lack of AC

A Scalable Protocol Architecture for E2E Signaling and Resource Reservation

- ▷ Reservation aggregation (RFC2430 (MPLS), Draft-RSVP-AGGR)
 - Establish aggregate reservation
 - Forward traffic in an aggregated way
 - Bypass individual RSVP messages
- $\triangleright \Rightarrow$ State reduction N:1 in router MIBs

Hierarchical Aggregation for State Scalability

- ▷ Number of required aggregates scales like $O(n^2)$
- Solution: hierarchical reservation aggregation

Michael Menth

Overreservation for Signaling Scalability

- Update of aggregate reservation necessary for every change of aggregated flows
- ▷ Solution: overreservation for aggregate reservations

Analysis of the Inter-Update Time

 $-(\lambda + n_{low} \cdot \mu)$

 $(n_{low}+1)\cdot\mu$

0

0

 $Q^v =$

λ

• • •

0

0

- ▷ Assumptions
 - Telephone calls with holding time 1/µ
 - No call blocking due to lack of bandwidth
 - Call arrival rate λ
 - Call termination rate *n*·μ for *n* active calls
- ▷ Tolerance window [n_{low};n_{high}]
- Description of the waiting process by state transition matrix
 - Q^w

0

0

λ

 $-(\lambda +$

. . .

 $n_{high} \cdot \mu$

Computing the Moments of the Inter-Update Time

- ▷ n^{th} moment of the inter-update time $E[W_i^n]$, $i \in [n_{low}; n_{high}]$
 - First passage time of the waiting process
 - Depends on start state *i* within the tolerance window
- Definitions

$$m^{(n)} = \left(E[W_{n_{low}}^{n}], \dots, E[W_{n_{high}}^{n}] \right)$$
$$m^{(0)} = \left(E[W_{n_{low}}^{0}], \dots, E[W_{n_{high}}^{0}] \right) = (1, \dots, 1)$$

Recursive equation

$$m^{(n)} = -\left(Q^{w}\right)^{-1} \cdot n \cdot \left(m^{(n-1)}\right)^{T}$$

Coefficient of variation

$$\sigma_{W_i} = \frac{\sqrt{E[W_i^2] - E[W_i]^2}}{E[W_i]}$$

University of Würzburg Distributed Systems

Impact of the Tolerance Window Position

- ▷ Mean aggregate size \overline{n} =10000
- ▷ Radius of tolerance window r=100
- Best performance if window is symmetric around mean queue length

- ▷ Growth of the inter-update time
 - Mean aggregate size $\overline{n} = 10000$
 - Quadratic for small window sizes
 - Exponential for large window sizes

A Rule of Thumb for Overreservation

- ▷ Rule of thumb
 - Constant inter-update time for various aggregate sizes
 - Sharp upper bound

- Control for tradeoff between
 - Bandwidth efficiency
 - Signaling reduction

Overreservation and Bandwidth Efficiency

- Performance of the update scheme
 - $r = 0.5 \cdot \sqrt{n}$: inter -update time: 15 seconds
 - Bandwidth efficiency: 95 % for aggregate size 100

Summary

- ▷ Scalable protocol architecture
 - Synthesis of
 - IntServ
 - DiffServ
 - Based on aggregate reservations
 - Scalability with respect to
 - States in router MIBs
 - Signaling traffic
- Update scheme using overreservation
 - Analytical performance evaluation of inter-update time of aggregate reservations
 - Rule of thumb: recommendation for overreservation
 - Good bandwidth efficiency in spite of overreservation

Outlook

- Creation of suited reservation hierarchies in general network structures
 - Decreases average growth of state number in router MIBs from O(n²) to O(n)

- ▷ Integration of
 - Hierarchically aggregated reservations
 - Traffic engineering methods

