

Performance of TCP/IP with MEDF Scheduling

4. Würzburger Workshop "IP Netzmanagement, IP Netzplanung und Optimierung"

Rüdiger **Martin**, Michael **Menth**, Vu **Phan-Gia** University of Würzburg, Germany

[martin|menth|phan]@informatik.uni-wuerzburg.de

- ▷ Best effort traffic only in today's Internet
 - → No prioritization
- Static Priority (SP) for high priority Transport Service Class (TSC)
 - → Starvation of low priority traffic
- ▷ Differentiated Services Architecture (DiffServ) implements appropriate per hop behavior to differentiate between TSCs
 - Common recommendations:
 - Weighted Round Robin (WRR)
 - Deficit Round Robin (DRR)
 - **—** ...
 - Fixed share of bandwidth for different TSCs

Anticipated traffic mix:

Current traffic mix:

▶ Problem:

- Conventional scheduling algorithms:
 - No priority
 - Starvation of low priority flows
 - Fixed bandwidth shares

Knowledge of traffic mix required to provision adequate Quality of Service

Is there a way to introduce traffic-mix-independent per-flow-prioritization?

Modified Earliest Deadline First (MEDF)

- MEDF description
 - One queue per TSC
 - Packets equipped with a time stamp
 - Deadline=ArrivalTime+M_{TSC}
 - Delay advantage: M_{high} =0, M_{low} >0,
 - Scheduling decision
 - Take packet with the earliest deadline among all queues
- Difference to EDF
 - Simple implementation, no searching / sorting required

Modified Earliest Deadline First

$$M_{high} = 0$$
, $M_{low} = 1$

MEDF: Service Differentiation in the UTRAN

Model of the Transport Network Layer (TNL)

Performance of MEDF Scheduling in the UTRAN

SP: Static Priority

FIFO: First-In First-Out

Traffic Mix Ratio CSD:PSD

WRR(n:m): Weighted Round Robin with Weights (n:m)

- - Best performance
 - Degree of prioritization of stringent TSC over tolerant TSC on the packet level

independent of the current traffic mix

Can MEDF be used to introduce traffic-mix-independent per-flow-prioritization?

MEDF: Single Link Simulation Environment

- - Packet loss p_{loss} (→ space priority)
 - Round Trip Time RTT (→ time priority → MEDF)
- Classical dumbell topology to isolate MEDF characteristics

MEDF Analysis: Traffic Mix

MEDF Analysis: M_{low} parameter

MEDF: Multi-Link Simulation Environment

MEDF Analysis: Multiple Links

→ Relative delay advantage increases with the number of links

MEDF Analysis: Buffer Space Priority

Summary

> Problem

- Conventional scheduling disciplines:
 - No prioritization or starvation or fixed bandwidth shares per TSC or
 - traffic mix required for adequate QoS provisioning (not available)

Solution

- MEDF
 - traffic-mix-independent per-flow-prioritization in TCP/IP networks
 - Single parameter: delay advantage M_{low}

Conclusion

▶ Results

- Effective prioritization of TCP traffic
- Impact of delay advantage M_{low}
- Comparison with buffer management strategies

- Simple and parameterizable prioritization in TCP/IP networks without starvation
- Application in Differentiated Services network

Q&A

