Next Generation Network Measurement

Mark Crovella

Internet Measurement: The Golden Years
[Kleinrock and Naylor, 1974]

• Original ARPANET had built-in abilities to:
 Trace a single packet’s passage through the network
 - Obtain instantaneous traffic matrix
 - Obtain instantaneous queue lengths in IMPs
 - Obtain per-IMP traffic summaries and histograms
 - Obtain any IMP’s routing table

• Measurement-based research on packet switching was a explicit goal of the ARPANET
What Happened?

- The focus of network research became concentrated on connectivity
- Detailed analysis of the network itself fell by the wayside
 - c. 1975 DCA took over operation of the ARPANET, Network Measurement Center shut down
- Pendulum has swung very far in this direction
 - Many Internet design decisions actually have impaired network measurement

Design Impediments

- The IP Hourglass
 - IP over everything

- Core simplicity
 - Stateless switching, stupid network, end-to-end argument

- Distributed Internetworking
 - Shutdown of NSFNET backbone in 1995 removed single measurement point
Practical Issues

- **Data Volume**
 - Hundreds of megabytes / sec on backbone links
- **Data Sharing**
 - Sensitive information on many levels
 - Privacy sensitive
 - Competition sensitive

Statistical Difficulties

- **Long tails**
 - Instability of metrics
 - Debate over stationary models
 - Difficulty in modeling (powerlaws? Lognormals?)
- **Autocorrelation**
 - Strong autocorrelations increase measurement needs
- **High dimensionality**
 - Address space, port space: huge
What can we do?

• Ad hoc, near term:
 - Continued research on methods to overcome limitations of current situation
• Fundamental, long term:
 - New Internet measurement paradigms
 - Construction of Internet measurement facilities operated and shared by the research community (not by providers)

Near Term / Ad hoc

• Too much data: Sample (intelligently)
 - Packet, trajectory, flow sampling
 - Topology capture
• Unavailable data: Infer (intelligently)
 - Network-internals (tomography)
 - Link types (wired/wireless)
• Lack of Visibility: Ingenious workarounds
 - Traceroute (many variants)
 - Rocketfuel
Some Successes

- Router & AS topology characterization
- Characterization of interdomain system
- Inference of hidden properties
- Traffic modeling (short and long timescales)
- Statistical invariants (mice & elephants, Zipf laws)
- Characterization of Web graph
- Models of worm propagation
- Science driven engineering (AT&T, Sprint, ...)

Big challenges ahead

- Engineering
 - Performance evaluation
 - Capacity planning
 - Security
- Science
 - Interaction of network and people / society
 - Growth laws
 - Statistical properties
Fundamental, longer term approach

- New Internet measurement paradigms
- Construction of Internet measurement facilities operated and shared by the research community (not by providers)

How is Internet Measurement Done?

- Three models
 - Internet Measurement Organizations
 - CAIDA, NLANR, RIPE, ...
 - PI driven projects
 - Local measurement infrastructures
 - Built by effort of a single PI / small group
 - Planetlab
 - Community-shared resources
 - But very limited measurement capability
Time Ripe for a Community Approach?

- Community Approach =
 well defined measurement community +
 well defined measurement scope +
 variety of research agendas +
 need for expensive measurement equipment +
 community self-organization

Active Community Exists

- IMW/IMC submissions
 2001: 53
 2002: 93
 2003: 109
 2004: 157

- PAM experienced similar growth
 2004: 184 submissions

- Books in area
 "Evolution and Structure of the Internet,"
 "Internet Measurement: Infrastructure, Traffic and Applications"
Internet Science

- Measurement Scope: Understanding the Internet at all layers, as it evolves in time
- Does this correspond to any other sciences?
- Can we learn from how other sciences organize their measurement infrastructures?

Astronomy

- Large collection of discrete objects (stars, galaxies, planets, etc)
- Interested in their emissions and reflections
- Can measure these objects, but can’t really do much to affect the objects being measured
Biology

• Interested in describing systems (cells, populations) that are
 - Complex
 - Comprised of many interacting mechanisms with
 - Many feedback loops
• Can affect systems in some ways
 - Can “poke” a cell or organism to see what happens
• Can’t usefully take apart a functioning system

Earth Science

• Scale of the system studied is global
• Many important effects concern interaction of human society with the system
• Many important effects depend on geography and physical distance
Example Community Approaches

- Astronomy: building and operating large telescopes
- Oceanography: building and operating research vessels

Telescopes

- Range of options (smaller -> more informal)
 - Owned/operated by small groups
 - BU/Lowell 2m telescope
 - BU supports at $150K/year (1/2 time)
 - National Facility
 - Keck
 - Space Based
 - Hubble
Astronomy

- **Example: Keck Observatory**
 - Governing board for telescope
 - One member per institution (Dean or Scientist)
 - Director appointed by Board
 - Time Allocation Committee
 - Not insiders – peers from across discipline
 - Serve on committee 2-4 years
 - Accepts short (2-page) proposals 1x or 2x / year
 - Ranks and forms a consensus list
 - 20 proposals / semester (one day's reviewing)

Telescope proposal process

- **Two parts**
 - Science proposed
 - Amount of time being requested
- **TAC:**
 - Ranks science 1-10
 - Ranks time, makes recommendation
 - Can say "try 10% of time, if it works, come back for more" or "We think you can do this in 1/3 the time"
- **Director makes final call if telescope is oversubscribed**
Telescope Data

- Most national facilities make data available after some proprietary period
 - 6 months to a year
 - To allow PI to get data analyzed and out
 - Data will become available even if not used by PI
- Smaller facilities may not do this
 - Due to archiving costs
- Sometimes the Director will arrange a “shotgun marriage” if two projects propose to collect similar data

How do you build a new telescope?

- There is something called a “decadal review” – what astronomy needs to be done in the next 10 years
 - The next one is 5 years out, there is already a lot of jockeying going on 😊
- Clearly needs to have community behind it
 - If you can get on the decadal review, you are in good shape
- Usually:
 - Donor + Institutions + NSF/NASA
Oceanography - Research Ships

- All research ships are handled by a single organization - UNOLS (61 institutions)
 - 27 research vessels in 20 home locations
 - All schedules publicly available
- Ships are owned/operated by home institutions
 - under contract to NSF
- Chair, Council, and Committees
 - Ex: Ship Scheduling Committee

UNOLS oversees, Funding agency allocates

- $50,000 / day ship time
- Ship time request submitted as part of proposal
 - PI specifies how much ship time is needed
 - About a year in advance
- NSF, ONR, NOAA panel reviews and approves ship time
- UNOLS Scheduling Committee
 - Implements NSF panel recommendations
Oceanography Data

• Ocean Core Drilling Program
 - 15 years $150M
 - All cores are kept forever (3 locations)
 - Professors send their students to sample cores
 - All data must be made available 1 year after collection

• UNOLS
 - All data must be made available 2 years after collection
 - Researchers on same cruise share data
 - UNOLS matches experiments

Time Ripe for a Community Approach?

• Community Approach =
 well defined measurement community +
 well defined measurement scope +
 variety of research agendas +
 need for expensive measurement equipment +
 community self-organization
What model makes sense for a CONMI?

- Not single-threaded like a telescope
 - Many experiments should be able to run simultaneously
 - We can exploit virtualization
- Should have some sense of “global” coverage like ocean science
- Data archival
 - Notion of “embargo” or “proprietary period” seems to work in other sciences