Deutsche Telekom Corporate R&D
Evaluation of Next Generation Network Architectures and Further Steps for a Clean Slate Networking Approach

Michael Düser and Andreas Gladisch
T-Systems Enterprise Services GmbH, Technologiezentrum SSC ENPS, 10589 Berlin
31 July 2006, ITG EuroView 2006, Würzburg

DISCLAIMER

All material presented here is the sole property of the Deutsche Telekom Zentralbereich Technology & Innovation (ZB T&I), Friedrich-Ebert-Allee 140, 53113, Bonn, Germany.

Copyright © Deutsche Telekom 2006
Motivation

Change of (technical) paradigms
- Services converge to packet-based solutions (VoIP, IPTV) at the customer edge
- Transport becomes ever more cost-efficient
- Optics in the access – broadband everywhere

Analysis & implications
- Implementation of converged networks offering seamless services
- Investigation of the trade-off between packet- and circuit-based solutions
 - How scalable are different network architectures?
 - Which role do transport solutions in future core networks?

Objectives
- Investigation of 3 typical architectures with respect to node throughput, link and tunnel size for a DT related network architecture
 - Extend technical discussion to further aspects ...
 - Some contributions to the ‘Clean Slate’ discussion regarding future network research direction

Embedding of Architectural and Traffic Demand Scenarios Considering Future Competitive and Regulatory Impact
Topological Scenario

DT IP network topology
- 75-node (3 inner core, 9 outer core, 63 regional nodes)
- Inner/outer core triangles
- 7 regio networks connected to each outer core location

Abstracted topology
- Traffic demand: 1 – 100 Tbit/s

Important Combinations of Architectural & Technological Alternatives

ACCESS
- Here: Focus on core/metro
- Multiple options possible for access (FTTX)

METRO
- Conventional Metro
-Collapsed residential aggregation network

CORE
- IP/static OTN
- IP/SDH/WDM
- IP/dynamic OTN (GMPLS)
- IP/Ether/static OTN
- IP/all optical

IP = IP/MPLS
Brief Description of Three Considered Architectural Scenarios

- **IP/MPLS**
 - IP/MPLS routers in the metro and backbone area interconnected by fixed OTH systems
 - Common management of IP and OTH

- **GMPLS**
 - IP/MPLS routers with fixed OTH systems in the metro, and reconfigurable OTH systems in the backbone
 - Common control and management (GMPLS)

- **Ethernet**
 - IP/MPLS routers and/or L2 switches in the metro and backbone interconnected by fixed OTH systems
 - Interconnection of routers / switches via L2 or L3 possible – the functional separation needs further investigation
 - Managed by common or separate IP and Ethernet control planes

Scenario I: All IP/MPLS

- Efficient traffic grooming and cost effective transport of coarse granular traffic streams in backbone
- Offers IP/L3 services and emulates L1 and L2 services
- Increased data plane complexity
- Scalability of integrated multilayer control may be limited
- Acceptable migration path from MPLS to GMPLS
Scenario II: IP/MPLS – GMPLS

- Efficient traffic grooming and cost effective transport of coarse granular traffic streams in backbone
- Offers IP/L3 services and emulates L1 and L2 services
- Increased data plane complexity
- Scalability of integrated multilayer control may be limited
- Acceptable migration path from MPLS to GMPLS

Scenario III: Dominant Ethernet

- Leased line brutal bandwidth high because LLs’ low filling factor (20%): migration of LL to Ether production offers high packet gains
- Offers IP/L3 and L2 services and emulates L1 services
- Simplified data plane but continuing cost advantage of Ethernet switching over IP/MPLS routing unclear
- Currently high complexity of Ethernet configuration, fault and performance management
- Unresolved tension between view of Ethernet as a low-cost fabric versus the rich fabric for tomorrow’s services
Assessment of Nodal Throughput, Link Load and Tunnel Bandwidth

<table>
<thead>
<tr>
<th>Nodes</th>
<th>IP/MPLS</th>
<th>GMPLS</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP/MPLS routers reach a maximum > 10 TBit/s throughput</td>
<td>A) ODU begins at region: Router throughput max. 3 TBit/s ODU switch max. 30 TBit/s B) ODU begins at outer core: Router throughput max. 20 TBit/s ODU switch max. 30 TBit/s</td>
<td></td>
<td>IP routers process data in region (and outer core) with maximum of 3 TBit/s (20 TBit/s)</td>
</tr>
<tr>
<td>Achievable today</td>
<td>Data processing in inner- and outer core ODU based with reduced cost</td>
<td>Trade-off: reduced packet gain due to lower filling degree in inner- and outer core, leading to increased ODU brutto load</td>
<td>Ethernet switches in outer core and inner core reduce costs, but, a number of unresolved issues exist for Ethernet technology</td>
</tr>
<tr>
<td>But, highest transport cost</td>
<td></td>
<td>But, high transport cost</td>
<td>Achievable today</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Links</th>
<th>Requires inevitably link bundling on IP level for all load scenarios</th>
<th>Aggravates the problem identified for IP/MPLS scenario</th>
<th>Requires inevitably link bundling on IP level for all regarded load scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple channels per link required</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tunnels</th>
<th>Full mesh outer core: higher than 10 GBit/s on all channels Full mesh region: mostly below 10 GBit/s per channel</th>
</tr>
</thead>
</table>

The choice of transport or packet technology depends on the incremental cost, the meshing and the resulting tunnel bandwidth.

Critical Issues Identified … Leading to a more Thorough Investigation of Future Issues

- Link loads expected to exceed the capacity of a single physical channel (multiwavelength interface operated as one single logical interface)
- Load balancing is a basic requirement

- Paket vs transport efficiency
- ODU vs. transport

- First versions of multiwavelength interfaces are still in the process of being standardized, but not implemented yet
- Business customers might have different requirements

- Limited due to technical constraints of limited sharing capabilities
- Power consumption and heat dissipation in single shelf devices will be the most severe limitation factors
- Logical scaling limitations?
The entire industry undergoes both commercially and technically a deep transformation – a change even more profound than during the bubble years and completely changing the face of the industry.

Academia undertakes a rigorous evaluation of the existing network architectures and protocols – and prepares for a radical redefinition of architectures, protocols, and technologies which are truly suited for a knowledge-based society.

Long-term impact on architectures & technologies, value chains & business relationships

Architectural Implications

- IP and the optical core
- Topologies and routed networks
- Router development and IP architectures
- Issues in routing architectures
- Future applications
- The role of Ethernet