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Abstract

The current generation of P2P networks is intended to provide cost-effective al-
ternatives to the traditional client-server architecture. The main goal is to be able
to store and retrieve data in a decentralized manner. The challenge in doing so con-
sists in creating a stable overlay network that allows for fast and efficient searches.
In this paper we consider the Chord P2P algorithm in this context and analyze its
stability and efficiency with stochastic methods. We present realistic probabilities
for the problem of a disconnection and confirm the scalability of key lookups.

1 Introduction

The peer-to-peer (P2P) hype over the last years was mainly driven by legally questionable
applications like filesharing. Current P2P networks like gnutella [1], emule [2] and KaZaa
[3] are primarily used to share movies, music and the like [4]. Meanwhile, however, the
first business models based on P2P architectures start to emerge. An ever increasing
number of companies discovers the advantages of decentralized P2P networks. They
are no longer dependent on a single central unit nor do they have to invest in server
farms to guarantee the scalability of their systems. Thanks to a new generation of P2P
systems, based on so called Distributed Hash Tables (DHTs), distributed storage systems
or distributed indexes become possible. Together with those new systems, however, new
challenges arise as well. The main task of a DHT is to provide a scalable method of
associating data with a particular location in a distributed overlay network. Moreover,
it has to offer a fast and efficient way of retrieving this information at a later point in
time. DHT based P2P algorithms are intended to replace central servers. To do so in a
business environment they have to be able to guarantee efficiency and, most important,
a consistent global view of the stored data. Since P2P overlay networks are built on top
of IP networks, there exists a danger, that the overlay collapses entirely or is split into
two networks, that do not know about the existence of each other. In case of such an
inconsistent overlay state, successful searches can no longer be guaranteed and it might
even not be possible to reestablish a stable overlay network again. An analysis of the
evolution of such systems can be found in [5] and [6]. In this paper we concentrate on
Chord, a DHT based P2P algorithm, and analyze the way it preserves reachability and
stability of its overlay network.
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The remainder of this paper is structured as follows. In Section 2 we describe the basic
ideas behind Chord that are relevant to our analysis. In particular we summarize how
Chord realizes search efficiency and overlay stability. Section 3 validates the scalability
of data lookups in the overlay network. In Section 4 the probability for a loss of overlay
stability in Chord rings is calculated and fortified by more realistic failure probabilities
in Section 5. The results of our analysis are presented in Section 6 and Section 7 finally
concludes this paper.

2 Chord basics

The main purpose of P2P networks is to store data in a decentralized overlay network.
Other peers will then be able to retrieve this data using some sort of search algorithm.
The Chord algorithm solves this problems by arranging the participating peers on a ring
structure. The position of a peer on this overlay ring is determined by an m-bit identifier
using a hash function such as SHA-1 [7] or MD5 [8]. Additionally each document that
is to be stored in the P2P network is assigned an m-bit identifier using the same hash
function. Based on these identifiers the underlying P2P mechanism decides where to
store the documents. That is, the P2P algorithm determines which peers are going
to be responsible for which documents. Peers searching for particular documents will
then use the same algorithm to retrieve the searched information from the P2P overlay
network.

peer z

s

f

Figure 1: A Chord ring of size n = 4, where
the first three fingers of peer z co-
incide with its direct successor s.

peer z
s1

s2

s3

f4

f3

f2

f1

Figure 2: A Chord ring of size n = 16,
where each peer maintains r = 3
successors. The fingers for peer z

are also shown.

To maintain the ring structure of the overlay, each peer stores pointers to the first r

successors on the ring, i.e. the first r peers that succeed the peer in a clockwise direction
on the ring. Thus, if one of the peer’s r successors goes offline, the peer will still know
the next r−1 peers on the ring. If a peer, however loses all its r successors, the ring will
be disconnected. According to [9] the connectivity of the Chord ring can be obtained
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with high probability as long as r = Ω1(log2(n)), where n is the current size of the Chord
ring. In Section 4 we analyze the probability of a disconnection of the ring in detail.

In addition to its list of successors each peer also maintains a list of pointers to more
distant peers. The entries of this list are called fingers. They are used as shortcuts
through the ring when searching for other peers or documents. The i-th entry of the
fingerlist of peer z contains the identity of the first peer that succeeds z’s own m-bit
identifier by at least 2i−1 on the Chord ring. That is, the i-th finger of peer z with
hash value idz is pointing to the direct successor of idz + 2i−1 in a clockwise direction.
Fig. 1 shows a simplified example using a Chord ring of size n = 4. The first three
fingers of peer z are all pointing to peer s, since peer s is the first peer that succeeds
the corresponding theoretical finger positions in a clockwise direction on the ring. The
fourth finger is pointing to peer f accordingly. In theory a peer has to maintain a
list of m fingers, where 2m is the size of the hash functions co-domain. According to
[9], however, there are only O(log2(n)) distinct fingers in this list, since some of them
coincide as illustrated in Fig. 1. An in-depth analysis of searches in Chord rings can be
found in [10].

Finally, Fig. 2 shows a snapshot of a Chord ring consisting of 16 overlay peers. Peer z

maintains a successorlist of size 3 consisting of peers s1, s2 and s3. The distinct fingers
of peer z are pointing to peers f1, f2, f3, and f4 respectively. In the following section we
will validate that a peer only has to store O(log2(n)) different finger pointers and even
render this statement more precisely.

3 Validation of Chords Search Efficiency

One of the main features of a Chord ring is the ability to search for other peers and
resources. To speed up such searches, a peer can use its finger pointers as shortcuts in
the overlay network. When a peer first joins the overlay network it initializes its fingers
by using the fingerlist given to it by its direct successor. To keep these shortcuts up to
date a peer has to update its fingers in some periodic way. Since the most distant finger
represents the best shortcut through the Chord ring it is advisable to do so starting with
the more distant fingers and moving to the closer ones step by step. Once the updated
finger equals the direct successor, the peer should restart with the most distant finger,
since up from this point all closer fingers will coincide with the direct successor, just as
the first three fingers shown in Fig. 1.

As mentioned above, the i-th entry in the fingerlist of peer z contains the identity
of the first peer that succeeds z’s own hash-value by at least 2i−1 on the Chord ring.
Assuming an identifier space of size 2m, peer z with hash value idz has its fingers at

idz + 2i−1 for i = 1 to m.

Typically, the size of the identifier space is set to m = 160 bits. That is, each peer
on the Chord ring has m = 160 possible fingers to update. However, according to [9]

1Definition: T (n) = Ω(f(n)) if and only if there are constants
c0 and n0 such that T (n) ≥ c0f(n) ∀ n ≥ n0
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only O(log2(n)) of them are actually different, where n is the size of the Chord ring.
Assuming equally distributed peer IDs we are able to state the above more precisely.

Theorem 3.1 In a Chord ring of size n with equally distributed peer IDs each peer has
exactly dlog2(n)e different fingers.

Proof To prove the theorem, we calculate the index is of the most distant finger that
is still pointing to the direct successor of the peer. Since we are assuming an identifier
space of size 2m and an overlay network of size n with equally spaced peer IDs, the
distance to the direct successor of the peer is

2m

n
.

Furthermore the fingers of the peer are pointing to

id + 2i−1.

The index is of the most distant finger still pointing to the direct successor can thus be
calculated as

is = max

{

i : 2i−1 ≤
2m

n

}

= max {i : i ≤ m − log2(n) + 1}

= bm − log2(n) + 1c

Since there are m theoretical fingerlist entries and starting with index is all of them are
actually different, a peer has a total of exactly:

m − (i − 1) = m − (bm − log2(n) + 1c − 1) = dlog2(n)e

different fingers.

If we abandon the assumption that the peer IDs are distributed equally, we can still
calculate pcoin(x), the probability that at least the first x fingers coincide with the direct
successor of the peer. Therefor, we need parea(s), the probability that the hash ID of a
peer does not lie within a specific area of size s in the identifier space. Obviously,

parea(s) = 1 −
s

2m
.

Considering that pcoin(x) is the probability, that none of the remaining n − 1 overlay
peers lies between a peer and the theoretical position of its x− th finger, it follows that

pcoin(x) = parea

(

2x−1
)n−1

=

(

1 −
2x−1

2m

)n−1

.

Fig. 3 shows how this probability affects the number of different fingers in regular Chord
rings. The figure shows pcoin(x) plotted against x, the number of fingers that coincide
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Figure 3: Probability that the first x fingers coincide with the peers direct successor

with the direct neighbor of the peer, for two different overlay sizes. For n = 2j we
expect to obtain j different fingers. That is, using an identifier space of size m = 160
the first 160 − j fingers should coincide with the peers direct successor. As can be seen
in the figure it is very unlikely that a peer has significantly more or less distinct fingers
than expected. So as long as the hash function distributes the peer IDs uniformly to
the identifier space a peer maintains approximately log2(n) different fingers. In the next
section we shift our focus to the peers successorlist and calculate the probability that at
Chord ring loses its overlay structure.

4 Validation of Chords Stability

A P2P overlay network is connected if there exists a route from every peer to every other
peer. Running the Chord algorithm each peer maintains a list of O(log2(n)) successors
to keep the overlay connected. A peer gets disconnected from the network if all of its
successors fail. According to [9] a Chord overlay network stays connected with high
probability, even if every peer fails with probability 1

2
. The proof relies on the fact

that even so every individual peer fails with probability 1

2
it is very unlikely that all

O(log2(n)) successors of a peer fail at the same time. The conclusion that thus all peers
stay connected with high probability, however, misses a subtle point. That is, even so a
local disconnection (one specific peer loses all its successors) might be very unlikely one
can not draw the conclusion that a global disconnection (at least one peer in the overlay
loses all its successors) is very unlikely as well. To gain a better understanding of this
subtle but important point, we introduce some definitions:
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• pfail: probability that a node fails

• pld(r): probability that a specific node loses all its r successors and gets locally
disconnected

• pgd(n, r, pfail): probability of a global disconnection, i.e. the probability that at
least one peer gets locally disconnected in a network of size n, where each node
knows r successors, and each node fails with probability pfail

The probability for a local disconnection can then easily be calculated as

pld(r) = pr
fail.

Obviously, the more successors a peer has, the less likely it gets locally disconnected.
Since peers usually maintain a succesorlist of size2 r = O(log2(n)), a local disconnection
is less likely in larger networks. However, based on this observation alone, we can not
conclude that the probability of a global disconnection is comparably small as well.
That is, the more nodes there are in the overlay network, the higher the probability
that at least one of them gets locally disconnected. In other words, there is a trade-off
between these two mechanisms. On the one hand, the larger the Chord ring becomes,
the more successors are maintained by a peer, resulting in a smaller probability for a
local disconnection. On the other hand, the larger the Chord ring becomes, the more
peers run the risk of getting locally disconnected, resulting in a higher probability for a
global disconnection.

To estimate the stability of a Chord ring, we need to calculate the probability pgd(n, r, pfail)
of a global disconnection. That is, we need to calculate the probability, that at least
once r or more contiguous peers fail on the Chord ring. As an approximation we neglect
the ring structure of the overlay network and imagine the overlay peers arranged in an
ascending row as shown in Fig. 4. We regard the probability prd(x, r, pfail), that at least

11 rr nnr - 1r - 1

Figure 4: The n peers of a Chord ring arranged in an ascending row.

once r or more contiguous peers fail in such a row of x peers. Moreover, we can assume
a random distribution of failures, since the hash function distributes peers equally in
the identifier space and physical proximity does thus not reflect overlay proximity. For
the sake of simplicity we use the short notation prd(x) instead of prd(x, r, pfail) where
appropriate. Obviously, the probability that r or more peers fail in a row of less than r

peers is zero, as indicated by the dotted peers in Fig. 4. If we consider the same proba-
bility in a row of exactly r peers, all peers have to fail accordingly. The corresponding

2See [11] for a discussion of how to estimate the size n of the current overlay network
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formulae are:

prd(x, r, pfail) = 0 if x < r (1)

prd(x, r, pfail) = pld(r) = pr
fail if x = r (2)

In case of x > r we obtain:

prd(x) = prd(x − 1) + (1 − prd(x − r − 1)) · (1 − pfail) · pld(r) (3)

The formula is build recursively. To calculate prd(x), we take the probability prd(x− 1),
that there was at least one local disconnection in the first x − 1 peers and add the
probability, that the first local disconnection occurs at peer x. The second addend of
this sum is best explained using Fig. 5. There are two requirements in order that the

)1(1 −−− rxprd failp−1 )(rpld

1−− rx1 xrx −

Figure 5: Probability, that the first local disconnection occurs at peer x.

first local disconnection occurs exactly at peer x. First of all there must not be a local
disconnection in the first x − r − 1 peers as indicated by the dotted box in Fig. 5.
Secondly, peer x − r must not fail, while all of the last r peers have to fail to cause the
disconnection at peer x.

According to the above formula, the first local disconnection can occur at peer r. That
is, there are still r − 1 peers, that could experience a local disconnection but are not
accounted for in our equation. To improve the accuracy of our approximation, we add
r − 1 peers at the end of the row as shown in Fig 6. Thus, there are n peers in a row of

11 rr nnr - 1r - 1 n + r - 1

n peers

Figure 6: To incorporate the first r − 1 peers, they are added at the end of the row.

n + r − 1 peers that can experience a local disconnection. The resulting approximation
for the probability of a global disconnection in a Chord ring of size n is:

pgd(n, r, pfail) ≈ prd(n + r − 1, r, pfail) (4)

The remaining approximation arises as we neglect the ring structure of the overlay
network. In fact the probability is slightly to high, since the r− 1 peers we added at the
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end of the row are obviously correlated with the first r − 1 peers in the row. That is,
there are some failure patterns in the last r − 1 recursion steps, that have already been
taken into account before and are thus counted twice.

In Section 6 we validate Eq. 4 by simulation and present realistic probabilities of a
global disconnection. Note that the formula is not limited to the special case of

r = dlog2(n)e.

In fact we are able to evaluate the consequences of using too large or to small values for
r, i.e. of using more or less than log2(n) successors.

5 Realistic Failure Probabilities

In the last section we were simply assuming values for pfail, the probability that a
node fails. In practice, however, there is not much sense in saying a node fails with a
certain probability, without specifying a corresponding time frame. To guarantee overlay
stability a Chord peer refreshes its successorlist every tstab seconds by periodically calling
a stabilize() procedure. This stabilize() function takes care that a peers successorlist is
up to date by merging its list with the list of its closest successor alive. Thus, a peer
gets locally disconnected if all of its known successors go offline between two stabilize()
calls. Therefore, one should consider the probability, that a peer fails within this periodic
update interval instead of assuming some arbitrary values for pfail.

On account of this, we regard the average online time of a peer Eon in seconds.
Assuming that the online time is exponentially distributed with λon = 1

Eon
it follows

that
A(t) = 1 − e−λont (5)

is the distribution function of the online time of a single peer. Due to the memoryless
property of the exponential distribution the probability that a peer goes offline within
tstab seconds is3:

pfail = A(tstab) = P (A ≤ tstab). (6)

We can then use this pfail in Eq. 4 to calculate the probability of a global disconnection
within tstab seconds. The probability of a global disconnection increases with the number
of stabilize() calls. That is, the longer the Chord ring exists, the greater the probability
of a global disconnection within its lifetime becomes. The probability pit(n, i) that a
Chord ring of size n gets globally disconnected sometime within i stabilize() calls can be
calculated as follows:

pit(n, i) = 1 − (1 − pgd(n, r, pfail))
i. (7)

In Section 6 we present a parameter study, covering reasonable values for tstab, Eon

and r, the current size of the successorlist. We also show the impact of realistic failure
probabilities on the probability of a global disconnection and analyze how this probability
increases over time.

3The probability that a peer goes offline and online again within tstab seconds is neglected in this
context.
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6 Numerical Results

In this section we concentrate on results regarding the problem of a disconnection. At
first we have a closer look at the probability of a local disconnection. Figure 7 plots
the probability of a local disconnection against the overlay size for three different failure
probabilities of a peer. The number of successors is thereby set to dlog2(n)e. As expected
the probability of a local disconnection strongly decreases with the size of the overlay
network. This is obviously due to the fact that a peer maintains more successors in
larger networks and is thus less likely to be disconnected. Note that in a ring of size
n = 106 and a failure probability of pfail = 1

2
we have a very low probability of a local

disconnection of about 10−6.
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Figure 7: Probability of a local disconnection for different values of pfail

To show, that based on these facts alone, we can not derive a very low probability
for a global disconnection as well, we calculate the probability of a global disconnection
for pfail = 1

2
. Figure 8 shows this probability for networks of sizes n = 2k, where

each peer maintains a successorlist of size r = log2(n) = k. The probability of a global
disconnection does indeed decrease with the size of the overlay network. However, it does
not run towards zero but asymptotically reaches a probability of about 40 percent. So
when every node fails with probability pfail = 1

2
and every peer maintains a successorlist

of size r = log2(n) Chord does not stay connected with very high probability but gets
disconnected with a probability of roughly 40 percent.

To confirm this result we simulated the probability of a global disconnection by gen-
erating snapshots of rings of a specific size and counting the percentage of those rings
that did not get disconnected after 50 percent of all peers failed. The simulations were
repeated until the confidence intervals became smaller than 0.001. For smaller values
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2
.

of n the results obtained by our analysis are slightly above the simulated values as the
analysis neglects the ring structure. The error becomes negligible for overlay sizes above
n = 100.

In practice, however, a failure probability of pfail = 1

2
is obviously too pessimistic. To

obtain realistic values for pfail we evaluate Eq. 6 for different average online times of
a peer and different values of tstab. Figure 9 shows that even if the average peer only
stays online for 10 minutes and successorlists are only refreshed every 60 seconds, the
probability that a peer fails within this frame of time is still less than 10 percent.

In the following analysis we therefore concentrate on pfail= 0.1, 0.05 and 0.01. Figure
10 illustrates that a global disconnection is very unlikely for these values of pfail. Even
for a peer failure probability of 10 percent a Chord ring of size 105 will be globally
disconnected with a probability of less than 10−12. The staircase form of the curve arises
from the fact, that the plot is done for arbitrary n and corresponding successorlists of
size r = dlog2(n)e. So whenever the overlay size n crosses a power of two, each peer starts
to maintain one additional successor in its successorlist. Therefore the probability of a
disconnection abruptly decreases whenever a power of two is exceeded. It then slightly
increases until the next power of two, since the probability of a local disconnection
stays the same, but there are more peers that can get disconnected and cause a global
disconnection.

So far, the results relied on a dynamic adaptation of the size of a peers successorlist.
In practice, however, it is more common to choose a fixed succesorlist size a priori.
Figure 11 illustrates the probability of a global disconnection for fixed successorlist sizes
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Figure 10: Probability of a global disconnection maintaining a successorlist of dlog2(n)e.
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of 3, 6 and 9. The failure probability of a peer is set to pfail = 0.01. As we can see, the
probability of a disconnection increases with the overlay size but scales very well to larger
networks. Moreover, the order of magnitude of the probability of a global disconnection
can be adjusted by choosing the corresponding successorlist size. Obviously, less than
dlog2(n)e neighbors are sufficient to guarantee a stable Chord ring when we assume a
realistic failure probability of pfail = 0.01.
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Figure 11: Impact of a fixed number of successors on the global disconnection.

To illustrate the effects of extremely high failure probabilities we plot the probability
of a global disconnection against the number of successors r. In Figure 12 we show the
results for a peer failure probability pfail = 1

2
and three different ring sizes n = 25,

210 and 215. The black dotted lines represent the suggested successorlist size dlog2(n)e.
Again the suggested number of successors results in a disconnection probability of about
40 percent. To guarantee a global disconnection probability close to zero, in this example
a peer has to maintain a successorlist of size dlog2(n)e + 7 or more.

Note that so far we calculated disconnection probabilities within one single stabilize()
period. As mentioned in Section 5 the probability of a global disconnection increases over
time. That is, the longer the Chord ring exists, the greater the probability that it gets
disconnected within its lifetime. Figure 13 plots the probability that a Chord ring gets
disconnected sometime within i stabilize() calls against the number of stabilize() calls
for different global disconnection probabilities. Assuming a stabilize() period of length
tstab = 30 seconds, 8 · 104 stabilize() calls roughly correspond to one month. Thus, the
results demonstrate that the probability that a Chord ring gets disconnected sometime
within the first month of its lifetime is by magnitudes greater than the same probability
within one single stabilize() period.
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Figure 12: Probability of a global disconnection for different successorlist sizes.
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Figure 13: Probability of a global disconnection after i stabilize() calls.
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7 Conclusions

In this paper we studied the efficiency and stability of a P2P system based on the
Chord algorithm. We confirmed that in a Chord ring of size n each peer maintains
approximately dlog2(n)e different fingers. The main focus of this paper is set on the
problem of a disconnection of the Chord ring. It was shown, that when every peer fails
with probability 1

2
a successorlist of size r = Ω(log2(n)) is not sufficient to guarantee a

stable Chord ring with high probability. In fact the probability of a global disconnection
is approximately 40 percent in this case.

For realistic use cases we derived an equation to calculate failure probabilities in
dependency of the average online time of a peer and showed, that subject to these
circumstances Chord can still guarantee a stable overlay network with high probability.
The formulas presented in this paper can thus be used for system dimensioning purposes.
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