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Abstract

For the Future Internet and the Internet of Things, access and transport networks
with much higher capacity than today are expected. As a result the bottleneck in
large scale multi-probe networks will move from the network to the processing units,
denoted as information sinks. Our contribution is a generic analytical performance
model which enables an analysis of the resource requirements and handling at these
information sinks. We will consider the required amount of buffer space at the
information sink for a certain target duration until all requests are processed within
an interval. This duration is denoted as reaction time. The presented model and
the performed investigations can support application designers to choose the right
mechanisms required for their scenario.

1 Introduction

Multimedia monitoring and surveillance are expected to become major applications of
the Future Internet (FI) [1] and the Internet of Things (IoT) [2]. This is witnessed
by initiatives like the European FP7 work program and technical projects such as Ur-

ban Sensing [3], Microgrid [4, 5], Wireless Camera Arrays [6], and national security
infrastructures [7, 8].

Current networked applications are designed for meeting the technical constraints of
networks. Networked systems, for example probes, are located in Local Area Network
(LANs) which are connected by access gateways to the Internet, cf. Figure 1. The trans-
mission capacity in a LAN is typically very high (∼100-1000 Mbps) while the capacity
of access links and the per-flow throughput in the transport networks is typically much
lower (∼1-10 Mbps). Hence, access link and transport network constitute a bottleneck
from application perspective [9]. As a result, the designers of distributed applications
have to adapt their applications to this impasse. The adaption can be achieved, for
example, by reducing and shaping the traffic which is injected into the network.
The Future Internet might reverse this approach for networked application design. The
FI may provide very high capacities on access links and in transport networks. For
example, the anticipated uplink capacity on advanced LTE (Long Term Evolution) con-
nections in future 4G wireless system is about 10-100 Mbps [10] and 100Gbps Ethernet is
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Figure 1: Today’s Bottlenecks

currently investigated as a core network transport system [11]. This increase of capacity
might decrease the characteristic of the network as a whole of being the bottleneck, cf.
Figure 2.

Moreover, these changes in capacity, together with the concept of Network Virtualiza-

tion [12,13], will allow for an evolution in system design: network engineers should design

networks for applications rather than application developers designing applications for
networks. As result for application designers, the FI will require them to reconsider their
system architecture. In particular new bottlenecks will appear at application compo-
nents such as servers or data processing units, in general denoted as information sinks.
Especially, in the context of the IoT where multimedia monitoring and surveillance will
be done by a huge number, even millions, of probes. It is expected that severe bottlenecks
will occur at these information sinks.

In this paper we will investigate how to design the information sink in large scale multi-
probe networks under the assumption that data transmission in the network does not
constitute a bottleneck. Particular focus is laid on the definition of a generic performance
model since specific applications can’t yet be foreseen, the computability of the model,
and the discussion of the trade-off between reaction time and memory. Reaction time in
this context is defined as the duration needed for processing the overall amount of data
from all probes within an interval. This investigation will support application designers
to choose at a very early stage in the design process the right mechanism required for

Figure 2: Future Bottlenecks
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their scenario. In detail, the investigation will guide them whether to increase queuing
memory or processor speed in a specific scenario.

The paper is structured as follows: Section 2 discusses the related work done in this
field of research. Section 3 details the generic application scenario. Section 4 introduces
the considered performance model in detail and Section 5 presents the results of the
investigations. Finally, Section 6 will conclude the paper and gives an outlook for further
research.

2 Background and Related Work

In [6] the authors describe a bandwidth management framework for wireless camera
array. They address the problem of bandwidth management in order to coordinate
multiple video flows in order to support wireless video streaming. For that different
relations and scheduling policies are investigated. In contrast to our contribution, which
assumes the information sink to be the bottleneck in the system, the authors assume
the wireless channel to be the bottleneck.

In [14] an analytical framework based on fluid models for large-scale wireless sensor
networks is developed. The approach discusses in detail energy consumption, channel
contention and traffic routing. Compared to [14], our approach focuses on the informa-
tion sink and not on the sensor network itself.

There are many queuing theoretical approaches for investigating server systems. In
[15] the buffer requirements for an ATM multiplexer were evaluated. Although there
are similarities to our system, the presented model in [15] differs from our since we
investigate different sizes of probe types which transmit their data in periodical intervals.
Furthermore, we investigate the scheduling of the transmissions within such an interval.

We assumed in [8] that all probes generate data following one single probability dis-
tribution. In this paper we present is an extension of the model in [8]. We will consider
multiple types of probes which generate data and send it the information sink according
to different distributions.

3 System Description

The general kind of system we consider in this paper consists of one central server that
periodically receives information from a number of sources connected to this server via a
network. This information is processed by the server, with information that is received
while the server is busy being buffered. Each source may send a random amount of
information per time interval, which is also termed time slice.

Examples for this kind of architecture are a server that gathers and processes pictures
from surveillance cameras in periodic intervals, or network probes monitoring certain
traffic characteristics and reporting their findings in regular intervals back to a network
management or anomaly detection system.

In the latter example, the information consists of counters updated by the probes
in each interval, with each probe being able to report different numbers and types of
counters. In current systems, general values logged by SNMP may be reported, such as
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the number of packets going over a link, as well as more specific characteristics, such as
the amount of traffic from a certain range of IP addresses. The server updates its current
view on the network in each interval and has to process all reported counter values in
an interval in order to do so. It may process single counters at a time and buffer the
rest (from the same probe or from others) in a queue. The processing of a counter
may include a comparison with older similar values, checking for violated thresholds, or
simply storing it in a database.

One aim of such a server is generating a fast new overview on the system state, i.e.,
a fast processing of the complete set of data generated by all sources in one time slice.
This has to be weighed against the buffer space needed to store data that could not yet
be processed. This would not be a problem if the server simply polled the sources one
after another, having only to store the data of one source at a time. However, in general
the communication between the sources and the server follows the push-model in the
examples described. The sources are therefore not polled by the server, but send their
data self-triggered. The only way the sending behavior of a source is influenced is by a
rough setting of the time it sends its data in relation to the other sources.

In the following, we will describe an analytical model of this family of systems and
provide insights in how the sending behavior of the sources may be influenced in order
to adapt the server load as necessary for given resources.

4 Model

In this Section, we describe the queuing model used to analyze the system as described
above.

4.1 Abstract Server Model and Performance Metrics

We consider scenarios with multiple clients and one server. For instance, clients can
be network or surveillance probes which send a packet consisting of a specific amount
of data to the server. This data is modeled as work to be done by the server, e.g.,
it stores the data in a database and performs a computation upon this data. Data
arriving at the server while it is busy is buffered into a queue, which we assume to be
infinite throughout this work. This assumption simplifies the analysis of the system
and allows us to discuss overall processing times and buffer sizes. We further assume
the amount, and therefore the processing time, of data per packet follows an arbitrary
distribution. Due to the diverse placement of the probes participating in such a system,
this distribution is basically different for each probe. Nevertheless, there may be probes
with similar processing time distributions. Thus, these probes approximately follow a
common distribution which simplifies the analysis. The probes transmit their data in
equally spaced time slices, with a constant length τ . As performance metrics for the
system we define the buffer occupancy O after the last arrival within a time slice and
the reaction time R as the time needed until the last request within a time slice is
processed. We will identify the trade-off between these two parameters. It should be
noted, that, especially for early detection systems, an interrelated analysis of all data
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Figure 3: Queuing model

transmitted within a time slice may be required. Thus, an objective may be for instance
to minimize the buffer occupancy for a given reaction time.

4.2 Performance Model

We model the described system as a D/GI/1 − ∞ delay queuing system as shown in
Fig. 3. We assume an infinite queue with a first-come-first-served order, i.e. no probe
data will be lost.

There are n probes in the system which send their data during a time slice to the
server. The state space is defined by means of the unfinished work in the system, U .
The amount of unfinished work generated by a probe at the server follows a probability
distribution bi(t) with mean E[Bi] and standard deviation STD[Bi]. There exist K
different distributions bK(t) with 1 ≤ K ≤ n, i.e. K different types of probes. In case
of K = n all distributions are different and can not be combined to several types, i.e.
the analysis can not be simplified. For K = 1 the analysis presented in [8] is sufficient
to produce the same results.

The total number of probes following distribution bi(t) is ni, 1 ≤ i ≤ K, and the total
number of probes is n =

∑K
i=1 ni. The number of probes m which have transmitted

their data within a time slice is incremented after each new arrival. According to the
type of the probe distribtution bi(t) at this arrival, the corresponding counter mi is also
increased. Thus we define the state vector m̄ denoting for each arrival how many probes
of each type have already transmitted their data, i.e. m̄ = {m1, m2, ..., mK}.

The average amount of unfinished work E[B] added by a probe to the system is defined
as E[B] =

∑m
i=1

ni

n
· E[Bi]

We compute the desired system parameters buffer occupancy O and the reaction time
R with a discrete-time analysis [16] [17].

4.3 Arrival Patterns

We consider the arrival pattern Distributed arrival pattern with processing phase which
was introduced in [8]. This pattern describes how the network probes are scheduled to
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send their measurements.
Considering this arrival pattern the time slice τ is divided into two intervals τ ′ and

τ − τ ′, which we denote as transmission phase and processing phase, respectively. This
approach is shown in Fig. 4. In the transmission phase τ ′, all probes are sending their
data to the server with constant inter-arrival times τ ′/m. The order in which the probes
transmit their data can change from time slice to time slice. The processing phase τ − τ ′

is then exclusively used for processing the data. For the case τ ′ = 0, which we call Super
Batch Arrival, all probes transmit their data simultaneously. Due to the cumulated
arrivals this leads to increased demands on the buffer capacity of the information sink.
The case τ = τ ′ we denote as Distributed Arrival. Here the arrivals are spread equally
over the whole time slice, which leads to a lower maximum utilization of the network
as well as of the buffer occupancy. However, idle times at the server appear between
two arrivals, which increase the processing time of a whole time slice. For τ ′ < τ the
idle time between two probe arrivals can be decreased. Furthermore, for τ ′ > 0 the
buffer requirements are reduced compared to the case τ ′ = 0. We will see later how the
parameter τ ′ can be used to tune the system either for buffer efficiency or for shorter
processing times, and thus for faster reactions.

It should be noted, that additional probes can be easily added to an existing instal-
lation by scheduling them after the last probe arrival. In this case, the length of the
transmission phase changes.

4.4 State Transitions and Computation of the Performance Metrics

We define the beginning of each time slice as observation points, where we investigate the
unfinished work u(t). These points are regeneration points, i.e., all of the past history
that is pertinent to future behavior is completely summarized in the current value of
u(t). Transitions between different states are described with state transition probability
matrices. A diagram of the investigated process including the state transition probability
matrices is depicted in Figure 5. We assume an equally spaced inter-arrival time ∆t
between the requests in a time slice. Depending on the arrival pattern, the inter-arrival
time takes values ∆t ∈ [0, τ

m
]. We will use the following notation, which is also used in

Figure 5:

t20

Counters
,

Probe Type 1

Probe Type 2
Probe Type 3

,,-

Figure 4: Distributed arrivals with processing phase

6



Figure 5: Time diagram of the process including state transition probability matrices

• uk(t) : unfinished work at the begin of time slice k

• tk,l : time of the l-th arrival in time slice k

• Q(τ) : state transition probability matrix between two observation points

• Bi : state transition probability matrix increasing unfinished work by bi(t)

• Pi(∆t) : state transition probability matrix between two arrivals increasing unfin-
ished work by bi(t) and decreasing the unfinished work by s(∆t)

• S(∆t) : state transition probability matrix depicting a reduction of unfinished
work for an interval

The state transition probability matrix Pi(∆t) describes the processing of unfinished
work between two successive arrivals and the unfinished work added by a new arrival.
The processing, depending on the inter arrival time ∆t, is denoted by the probability
matrix S(∆t). According to the probe type i of the current arrival, the amount of
unfinished work added to the server is represented by the probability distribution bi(t),
equivalent to the transition probability matrix Bi. Thus Pi is computed as:

Pi = S(∆t) · Bi (1)

with

Bi,jk = p (Bi = k − j), (2)

Sjk(∆t) =







1, if k = max{0, j − ∆t}

0, else.
(3)

At the regeneration points the remaining work load Uk can be computed, cf. [18], as

uk(t) = uk−1(t) · Q. (4)
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In case of a stationary system, i.e ρ < 1, the steady state equation is

u(t) = u(t) · Q. (5)

Thus, the steady state distribution at the observation points can be computed by finding
the left eigenvector for the probability transition matrix Q. Then, we can compute the
steady state distribution ol(t) at the time of arrival l by

ol(t) = u(t) · B1
i1
· P2

i2
.... · P l

ik
(6)

= u(t) · Ql, (7)

whereas Ql expresses the transition path to the investigated arrival.
The reaction time R is the sum of the service time Bm of the last request within a time

slice and the unfinished work Om, queued in the buffer at the arrival time of this request,
i.e R = (n− 1) ·∆t + On + Bn. Therefore we compute the reaction time distribution as

r(t) = δ(t − ((n − 1)∆t)) · on(t) · bn(t) (8)

But before we can compute the steady state distribution of unfinished work and the
buffer occupancy at the arrival times, we have to compute the transition probability
matrix Q. The algorithm for that is described in the following.

Let us observe an random arrival time in an arbitrary time slice, where m probes
have already transmitted their data. The state vector m̄ contains the number of the
different probes which have transmitted their data, m̄ = {m1, m2, ...mK}. Since at each
arrival time one probe transmits its data, there exist at most K different predecessor
states m−1

k , 1 ≤ k ≤ K for that state. Here m̄−1
k denotes the predecessor state m̄−1

k =
{m1, m2, ...mk−1, mk − 1, mk+1, ..., mK} and an arrival of unfinished work denoted by
Bk. Thus, we define the set k̄ denoting the possible predecessor states as

k̄ = k : ∃m̄−1
k |0 < mk ≤ nk. (9)

The state transition probability matrix to an arbitrary arrival Qm,m̄ is computed as

Qm,m̄ =
∑

k∈k̄

nk − (mk − 1)

n − (m − 1)
· Q

m−1,m̄−1

k

· Pk(∆t),

Q1,m̄ =
∑

k∈k̄

nk

n
· Q0,m̄−1

k

· Bk(∆t),

Q0,m̄ = I

An exemplary state transition is depicted in Fig. 6. There are k possible predecessor
states m̄−1 which may lead to the current state m̄. Thus the transition probability
matrix for state Qm,m̄ can be computed from these states.

With this result we easily can compute the transition probability matrix between the
observation points as

Q = Qn,m̄ · S(∆t) · S(τ − n · ∆t). (10)

With this result we first can compute the steady state distribution of the unfinished
work at the observation points, i.e. at the beginning of each time slice, and from this
the reaction time R and the buffer occupancy O.
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m−1,m̄
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Q
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−1

1

Qm,m̄

Figure 6: n-dimensional

4.5 Example for K=2

In this subsection we give an example for two different probe types, i.e. K = 2. The total
number of probes participating in the system n = 3, the number of probes of the first
type n1 = 2, and the number of probes of the second type n2 = 1. The unfinished work
added to the system by an arrival of type 1 follows the distribution b1(t), by an arrival
of type 2 distribution b2(t), respectively. For given τ and τ ′, the transition probability
matrices between two successive arrivals, P1 and P2 can be computed. With these
matrices, the different possible state transition probability matrices can be computed,
as depicted in Fig. 7. This figure illustrates the advantage of our algorithm to compute
the state transition probability matrix between the observation points. Let us regard the
transition state Q2,(1,1). This state combines the paths in which one probe of each type
has transmitted their data within the current time slice. Both possible transmission
sequences are weighted with their probability of occurrence into this transition state.
The next transition state Q3,(2,1) can be computed on the basis of its direct predecessor
states and does not have to rely on the sequence of the transmissions.

5 Numerical Results

We will now present results from this analysis that give a first impression of the system
performance. We consider heterogeneous scenarios with two different probe types, i.e.

2
3 · B1

1
3 · B2

1
2 · P1

1
2 · P2
2
2 · P1

1
1 · P2

1
1 · P1

Q0,(0,0)

Q1,(1,0)

Q2,(2,0)

Q3,(2,1)

Q2,(1,1)

Q1,(0,1)

Figure 7: Two-dimensional state transition diagram
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Figure 8: Mean buffer occupancy and mean reaction time vs. τ ′

probes transmit unfinished work according to two different distributions b1(t) and b2(t).
If not stated otherwise the buffer occupancy is given as multiples of the average amount
of work E[B] generated by a probe. The reaction time, as well as the length of the
transmission phase τ ′, is presented as fraction of the time slice length τ .

5.1 Macroscopic behavior

In a first investigation we assume these distributions to follow negative binomial distri-
butions with E[B1] = 25

10000 · τ and E[B2] = 75
10000 · τ . As standard deviation we assume

STD[B1] = STD[B2] = 20
10000 · τ , which leads to coefficient of variations cv1 = 0.8 and

cv2 = 0.27. Thus, we have modeled one source type with a highly variable output,
and one type that varies only little in the amount of work generated. We now examine
the influence of the length of the transmission phase τ ′ on the mean buffer occupancy
and on the mean reaction time as shown in Fig.8. We assume different load values as
ρ ∈ {0.25, 0.5, 0.75} with a corresponding number of probes n ∈ {50, 100, 150}, whereas
n1 = n2. The solid lines indicate the average buffer occupancy and the dashed lines
show the corresponding reaction time, i.e. the time until the last probe data has been
processed.

Let us define τ ′∗ = ρ · τ as average time the sink needs to process all data with no idle
phases occurring. Thus, the curves are divided into two parts, one with τ ′ < τ ′∗ and one
with τ ′ > τ ′∗.

For the case τ ′ < τ ′∗, the arriving measurement data can not be entirely processed
in the transmission phase, queuing occurs and the buffer occupancy increases with de-
creasing τ ′. For τ ′ = 0 the arrivals correspond to the super batch arrival scheme, i.e. the
measurement data of all probes arrive simultaneously at the information sink and the
buffer occupancy reaches its maximum. Accordingly, the mean reaction times correspond
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Figure 9: 99%-Quantiles of the buffer occupancy for each arrival and different values of
τ ′

to the average processing time τ ′∗.
For τ ′ > τ ′∗ the mean buffer occupancy is E[B] independent of the transmission phase

length. The probe inter-arrival time is large enough to allow a complete processing of
the measurement data of one probe before the next data set arrives. At most one data
set has to be stored in the queue. Since the reaction time is dominated by the processing
time of the last probe data, it increases linearly with the transmission phase.

The influence of the variation of τ ′ on the queue sizes ol at each arrival within a time
slice is illustrated in Fig. 9. For the case of ρ = 0.25, the 99%-quantiles as multiples of
E[B] for values of τ ′ = 0.1, ...0.4 · τ are shown. Thus, the interarrival time between two
requests varies between {0.1

50 · τ ; 0.4
50 · τ}. The x-axis denotes the index of the l-th arrival

within a time slice.
For τ ′ = 0.1 · τ , the buffer occupancy increases less than linear with the number l of

arrivals within the transmission phase. That is due to the fact that, for τ ′ < τ ′∗, the
average inter-arrival time is smaller than the average processing time of a request. Thus,
the system fills up and later arrivals tend to see more unfinished work in the system.
For higher values of τ ′, the transmission phase increases, and thus the inter-arrival time
between two arrivals, too. This leads to a slower increase of the buffer occupancy since
more requests can be served within the transmission phase. While a variation of τ ′ has a
significant impact on the buffer occupancy for 0.1 · τ < τ ′ < 0.2 · τ , this effect is reduced
for larger values of τ ′. Hence, increasing τ ′ > 0.3 leads only to marginal improvements
for the buffer occupancy. This also justifies that we consider the buffer occupancy of
the last arrival since all curves are monotonously increasing with the number of arrivals,
denoting the worst case in terms of buffer occupancy.
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Figure 10: Influence of different coefficients of variation cv

5.2 Influences of Variation on the System

Next we investigate the influence of variation in the work generated by the probes on the
buffer occupancy and the reaction time. Again we assume two different negative binomial
distributions for the packet size, bi(t) and b2(t). First we compare different coefficients
of variation cv for these distributions, whereas E[B1] and E[B2] keep constant.

With regard to the probe type, this investigation consists of two scenarios. The
first scenario investigates two different probe types. Therefor, it consists of s1 = 25
probes following a negative binomial distribution with E[B1] = 50

10000 · τ and s2 = 25
probes following a negative binomial distribution with E[B2] = 150

10000 · τ . For the second
scenario, we choose one probe type with s = 50 probes following a negative binomial
distribution with E[B] = 100

10000 · τ . For these scenarios, both with a system load ρ = 0.5,
we analyzed the behavior of the mean buffer occupancy and the mean reaction time for
two coefficients of variation, cv = 0.5 and cv = 1.

The results of this analysis are depicted in Fig. 10 for different lengths of the trans-
mission phase τ ′ = 0.1, ...0.7 · τ . The solid line again indicates the buffer occupancy
while the dashed lines denotes the reaction time.

For the case of cv = 0.5, the reaction time, is longer in case of two different probe
types as in the case with only one probe type. The average amount of unfinished work
per time slice is equal in both cases. However, due to the heterogeneous probe types,
the variation is bigger in the case with two different probe types. Thus, the mean
buffer occupancy and also the mean reaction time are higher for these scenarios. We
also observe that the average time needed for processing the data without idle phase,
τ ′∗ decreases. That means, that in order to achieve a small average reaction time, the
length of the transmission phase has to set to τ ′ < τ ′∗. However, for values of τ ′ < τ ′∗,
the average buffer occupancy increases. This impact becomes more obvious for higher
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Figure 11: Scenarios for different amounts of probes with constant system load

coefficients of variations. In the case of cv = 1, the average reaction time remains
constant for values of the transmission phase of τ ′ ≤ 0.3. For τ ′ ≥ 0.3, the average
reaction time increases with respect to the length of the transmission phase τ . We can
conclude that in case of several probe types increase the variation of the system, and
that such an increase has a significant impact on the choice of the transmission phase
τ ′.

The second investigation in this subsection deals with a variation of the amount of
probes belonging to the probe types. For each scenario, the overall average packet size
E[B], and thus the system load ρ remains constant. We consider two negative binomial
packet distributions with E[B1] = 100

10000 · τ and E[B2] = 50
10000 · τ . For both distributions

we adjust cv = 1. The number of s1 of probes following the distribution b1(t) ranges
between 0 ≤ s1 ≤ 30. The system load is set to ρ = 1

3 and the number of probes following
b2(t) is adjusted in order to reach this load. The influence of three different scenarios on
the mean values and the 99%-quantiles of the buffer occupancy and the reaction times
for different τ ′ are depicted in Fig. 11. We observe two homogeneous scenarios and a
heterogeneous scenario. The first homogeneous scenario consists of s1 = 30 probes which
generate a high amount of work. For the second homogeneous scenario we double the
number of probes, s2 = 60, and halve the amount of generated work per probe. Hence,
the load is constant in both homogeneous scenarios. For the heterogeneous scenario we
use s1 = 15 probes of the first type and s2 = 30 probes of the second type. That means,
that the load keeps constant in all three scenarios.

We observe a clear trend toward shorter reaction times and lower buffer occupancy
for a larger number of probes. This effect is negliable for the average values of the buffer
occupancy and the reaction time. However, the ratio of probes has a significant impact
on the 99%-quantiles. That is due to the varying amount of probes and the constant
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Figure 12: Buffer occupation for the arrival pattern distributed arrival with passive phase
for different τ ′ , cv = 1

system load. The average packet size E[B] keeps constant, i.e. the average amount of
unfinished work per time slice, and thus the average reaction time and buffer occupancy
keep constant. But a higher amount of probes causes a decrease of the variation of
the unfinished work per time slice. Thus, the higher quantiles, like the 99%-quantile,
decrease. We can conclude that in case of a constant system load ρ a higher amount of
probes generating fewer work leads to faster reaction times and a lower buffer occupancy.

5.3 Buffer and Reaction Time Distributions

We now investigate the trade-off between the buffer occupancy and the reaction time for
selected values of the transmission phase for a fixed system load of ρ = 0.5 and cv = 1.
For that we use the same scenarios as presented in the first investigation of Subsection
5.2.

Figure 12 shows the cumulative distribution function of the buffer occupation for
τ ′ = 0.4, 0.5, 0.6 · τ .

We observe that, especially for higher quantiles, the buffer occupancy is higher for the
case with two probe types. Although the mean values for the unfinished work are the
same in both scenarios, the variation of the unfinished work per time slice is higher for
scenario a).

The distribution of the reaction time is shown in Fig. 13. The variation clearly de-
creases and the average reaction time increases with the transmission phase. The curve
with short transmission phases of τ ′ = 0.4 · τ shows the largest variation which corre-
sponds to the observation that in this case the processing time is dominating the reaction
time. In case of τ ′ = 0.6 · τ , the reaction time has a much smaller variation and depends
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Figure 13: Reaction time for the arrival pattern distributed arrival with passive phase
for different τ ′, cv = 1

more on the length of the transmission phase. Note that this behavior is a desirable
property for real-time systems. In case of a transmission phase equal to the processing
time, the variation is smaller than in case of lower values of τ ′. The distribution is
right-skewed due to the processing of queued data probes from previous arrivals.

The evaluated results can be used for designing the server in an arbitrary multi probe
network. For that,we identify the interaction of the reaction time and the buffer occu-
pancy. We assume a buffer size of 20 · E[B] for the system and a desired 90%−quantile
for the reaction time of 0.6 · τ .

From Figure 12 we can conclude, that only for τ ′ = 0.6 · τ the buffer size requirement
is fulfilled. But, from the analysis of reaction times, cf. Figure 13, we observe, that for
this value the 90%−quantile of the reaction time is exceeded. Due to the high variation,
the requirements can not be guaranteed. In order to fulfill the requirements, the server
would have to be dimensioned bigger or the variation of the counter distribution would
have to be reduced. Without such an extension, τ ′ = 0.5 · τ would be most suitable for
the system. For a buffer size of 40 · E[B], τ ′ = 0.4 · τ would be possible and speed up
the mean reaction time considerable.

6 Conclusion & Outlook

The paper developed and investigated a mathematical model for the information sink
in large scale multi-probe networks. Currently the transport network constitutes the
bottleneck from applications perspective, but for the Future Internet this may change.
Especially in the case of multimedia and surveillance applications with a huge number
of data sources, bottlenecks will appear at the information sink.

Since specific applications can not yet be foreseen we defined a performance model for
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a diversity of probes participating in one system. With the introduced analytical method
the reaction times, which denotes the processing duration for the data generated by all
probes within the system, can be computed. Furthermore the trade-off between the
reaction time and the buffer for different scheduling mechanisms can be investigated.
Thus, the presented model can be used by application designers and administrators to
design their system for their specific constraints, e.g. for minimizing the reaction time
for a given buffer occupancy.

We investigated the system for different system loads, different variations of the
counter distributions and different arrival patterns. We further showed how to use the
presented results for the design of such a system and explained how to tune the system
to fulfill given requirements. An open issue is the investigation of transmission failures
and their influence on buffer occupancy and reaction times. Also the model can still be
extended by, e.g., including additional random service times denoting the influence of
operating systems and other processes.
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